10 resultados para Biological Phosphorus Removal

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The discharge of nutrient rich effluent from aquaculture systems into coastal waters is cause for concern. Direct filtration of aquaculture wastewater, using floating medium and sand with in line flocculation, and biological filtration using activated carbon, has the potential to improve water quality for recycling within aquaculture systems. This study looked at the performance of laboratory scale dual media and activated carbon filters in suspended solids and nutrient removal in the treatment of aquaculture wastewater. The dual media filter, with flocculant FeCl3 of 9mg/L, functioned best at a velocity of 7mJh with low headloss, and good turbidity and phosphorus removal (80% and 53% respectively). The activated carbon filter removed ammonia (84%) and nitrite (71 %) in the process of nitrification with a five-hour hydraulic retention time. This paper reports preliminary results from a longer term sustainable aquaculture project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biosolids were used to remove zinc, manganese and cyanide from mining wastewaters. The effect of aqueous parameters and reaction variables on contaminant biosorption was quantified. The mechanism of removal was adsorption onto amine and carboxyl functional groups. Immobilisation was investigated to overcome problems of swelling and disintegration of the biosolids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse osmosis (RO) is currently one of the most prevalent methods used for seawater desalination. During the past four decades, the research anddevelopment has reduced the energy consumption from about 20 to 4 kWh/m3, while improvements in membrane science has led to a 20-fold increase in the specific membrane flux. Nevertheless, research is still underway to reduce the operation and maintenance problems and thus improve the performance of RO systems. The most important maintenance problem associated with RO operation is the membrane fouling, especially biological fouling (biofouling). This work focuses on the aspects to eliminate biofouling in RO membranes, by adopting a proper pretreatment system. The experimental results revealed that fluidized bed biological granular activated carbon, at 15 min empty bed contact time (with dissolved organic carbon, DOC concentration of 6–8 mg/L) can be utilized effectively to remove nearly 100% biodegradable DOC from seawater. Continuous experiments of membrane bioreactor (MBR) have been conducted concomitantly to gain insight into the long-term effects of MBR on biodegradable organic content removal and biofouling control. The results show that MBR system produced better effluent with 78% DOC removal and quasi-total biodegradable DOC removal. Dissolved oxygen was not a limiting factor for the DOC degradation. Short-term experimental runs were conducted with RO membrane using both pretreated and non-pretreated seawater. The results showed that filtrate from MBR yielded the highest permeate flux improvement, which was approximately 300% compared with non-pretreated seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many Asian countries, rapid industrialization and urbanization has led to an increased number of cars, making wastewater from gas stations an important issue of concern in urban environment. This wastewater is characterized by high concentration of oil-water emulsion, which cannot be effectively removed by a conventional gravity separator. An experimental investigation on the treatability of oily wastewater from gas stations using a membrane bioreactor (MBR) system revealed that MBR system could achieve good removal efficiency with stability against shock loading. Optimum operating conditions were found to be at a hydraulic retention time of 4 h and an oil-loading rate of 1.8 kg oil m^sup -3^.d^sup -1^. It was anticipated that adding powdered activated carbon (PAC) in the MBR could help to adsorb the oils. However, operating the MBR with only microbial flocs has an advantage over adding PAC particles into the MBR, since the former condition could provide a prolonged cycle of filtration with a relatively lesser increase in transmembrane pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm−1. The hydraulic loading rate was tested at 3.75 cm day−1. In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha−1 year−1 biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbon (AC) developed from loofah sponge with phosphoric acid activation was applied to absorb cefalexin (CEX) in aqueous solution. AC was characterized by N2 adsorption–desorption isotherms and Fourier transform infrared spectroscopy (FTIR). Factors influencing the adsorption process were investigated. The equilibrium adsorption isotherms and kinetics of CEX were also studied. The results showed that AC prepared from loofah sponge had rough surface and abundant pores. The determination results of specific surface area (810.12 m2/g) and average pore size (5.28 nm) suggested the high adsorption capability. At low concentration, the AC could adsorb about 95% of CEX. The adsorption effect was independent of the temperature and pH. The maximum adsorption amount of CEX was about 55.11 mg/g at 308 K. The equilibrium data agreed well with Freundlich isotherm equation (R2 = 0.9957) at 308 K, which indicated multilayer adsorption. FTIR analysis suggested the existence of phosphorus-containing functional groups, C–O bond, and C=C bond on the surface of AC of which the peak intensity of AC after adsorption was slightly lower after adsorption, indicating that the AC surface groups interacted with or were covered by the CEX species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we reported a new method in which molybdenum heteropolyacid salt was selected to mix with lanthanum oxide and bentonite, respectively, and the dipping method was used to prepare the new composites of heteropolyacid salt–lanthanum oxide, heteropolyacid salt–bentonite, and heteropolyacid salt–lanthanum oxide–bentonite. We observed that the composites have a better removal effect for phosphorus by control of the ratio and calcination temperature. The effect of quantity, adsorption time, phosphorus wastewater concentration, and pH value of composites on phosphorus adsorption was studied. We also found that the removal rate of phosphorus by the composite of heteropolyacid salt–lanthanum oxides increases up to 99.1% under the condition of 1:1 mass ratio and 500°C of calcination temperature. IR and XRD studies suggest that molybdenum heteropolyacid salt has been loaded to lanthanum oxide carrier successfully and heteropolyacid salt keeps the original Keggin structure. Heteropolyacid salt–lanthanum oxide has a good adsorption effect on phosphorus under the condition of 0.15 g of the composite, 90 min of adsorption time, phosphorus concentration of 50 mg L−1, and pH value of 3. The adsorption of phosphorus corresponds with the Langmuir isotherm model and Lagergren first-order kinetics equation. Therefore, the composite has excellent absorption ability and was competent in removing phosphorus with a low concentration from aqueous solution. It could be a great potential adsorbent for the removal of phosphorus in lakes, rivers, and reservoirs.